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ABSTRACT 
 

Transmission coefficient was calculated by a transfer matrix method in the case of a step-like 
single barrier structure. The resonant energy is mainly determined by the width and the height of the 
thicker (main) barrier. The height of the thinner (additional) barrier does not affect the resonant 
energy, but strongly influenced the peak valley ratio instead. 
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１．Introduction structure is that only three heterointerfaces are needed while 

the double barrier structure requires four. We report, in this 
article, the dependence of the width and the height of the two 
barriers on the resonant characteristics. 

The study of resonant tunneling busted out since Tsu et al. 
reported the I-V characteristics of a finite superlattice 
obtained by a numerical calculation1). The resonant tunneling 
is characterized by the existence of a resonant peak in the 
relationship between transmission coefficient and incident 
electron energy. It follows a differential negative resistance at 
room temperature2) that can be realized in various devices 
such as oscillators. The resonant tunneling is at the same time 
a genuine quantum phenomenon and so operates at high 
frequencies in THz region3). 

 

２．Calculation method and parameters 
Transmission coefficient was calculated based on a 

one-dimensional time-independent Schrödinger equation 
where the effective mass was assumed to be 0.05 mo through 
the system (mo: electron mass in vacuum). The negligible 
difference in the effective mass in the two barriers was 
ignored to simplify the problem. Since there are three 
boundaries in the system, six boundary conditions are 
obtained which are expressed with matrices. The transfer 
matrix formalism was in accordance with the literature1). 
Since the step-like single barrier structure includes fewer 
boundaries than a double barrier structure, the calculation was 
less complicated.  

The resonant tunneling effect has been usually realized in a 
double barrier structure. The barriers have mostly the 
rectangular form but the form makes little sense in the effect. 
The well width determines the resonant energy and the 
sharpness of the resonance depends on the barrier width. The 
barrier height slightly affects the resonance. These features 
have been systematically studied in the transmission 
coefficient spectra4-6).  

３．Results and discussion Recently, a step-like single barrier structure was reported 
to show resonance as well as the double barrier structure7). 
The step-like single barrier is depicted in Fig. 1 (b) with a 
conventional double barrier (a). The advantage of the  

We studied first the width dependence of the first barrier 
on the transmission coefficient. The barrier heights of the first 
and the second barrier were 0.3 and 0.5 eV, respectively. The 
width of the first barrier was varied from 10 to 50Å while that 
of the second barrier fixed to 10 Å. Figure 2 shows the results  
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Fig. 2. The dependence of the width of the first barrier on the 
transmission coefficient T. The second barrier has a fixed 
width and a height of 10 Å and 0.5 eV respectively. The first 
barrier has a height of 0.3 eV. The widths of the first barriers 
are 10 Å (a), 30 Å (b), and 50 Å (c). 

 

 

Fig. 1. A conventional double barrier structure (a) and a 
step-like single barrier structure (b). 
 
of the transmission coefficient as a function of the incident 
electron energy. When the width of the first barrier was 10 Å, 
no resonance exists less than 1.5 eV. As the width becomes 
thicker, the sharper resonance peak appeared at the lower 
energy. The first resonant energy was 0.74 and 0.50 eV when 
the width of the barrier was 30 and 50 Å, respectively. In the 
latter case, the second resonance was also seen at 1.13 eV. 
The resonant energy depends on the width of the first barrier. 

On the other hand, the width of the second barrier was 
varied in Fig. 3 from 10 to 50Å. The first barrier width was 
fixed to 10 Å. When the second barrier width was 10 Å, the 
identical result was obtained as shown in Fig. 2. As the width 
of the second barrier becomes thicker, the sharper resonant 
peak appeared at the lower energy in the same way as Fig. 2. 
However, the resonance occurs in the higher energy 
compared with the results shown in Fig. 2. The first resonant 
energy was 1.07 and 0.74 eV when the width was 30 and 50 
Å, respectively. In this case, the resonant energy depends on 
the width of the second barrier. However, the resonant energy  

Fig. 3. The dependence of the width of the second barrier on 
the transmission coefficient T. The first barrier has a fixed 
width and height of 10 Å and 0.3 eV respectively. The width 
of the second barrier was varied 10 Å (a), 30 Å (b) and 50 Å 
(c) where the height was fixed to 0.5 eV. 

 
is different between Fig. 2 and Fig. 3 even if the total width of 
the barrier is the same. 

In both cases, the resonance occurs at the lower energy, as 
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the width of a barrier becomes the larger. It should be pointed 
out here that the transmission coefficient is not changed if the 
potential barrier is inverted from the right side to the left. It 
means that the concept of the first and the second barriers is 
nonsense. It can be said from these results that the thicker 
barrier determines the resonant energy. The feature should be 
discussed in terms of the main (the thicker) and the additional 
(the thinner) barriers. 

 

 

We describe next the interesting results shown in Fig. 4. 
The effect of the additional barrier was investigated as a 
function of the potential height. The width of the first and the 
second barrier is 10 and 50 Å, respectively. The potential 
height of the first barrier was varied from 0.1 to 1.0 eV while 
that of the second barrier was fixed to 0.5 eV. It is important 
to note that the resonant energy is independent of the barrier 
height. The first resonant energy is 0.71 eV when the height is 
0.6 and 1.0 eV. Even when the height is 0.1eV, the first 
resonant energy is no more than 0.79 eV. When the height is 
0.6 and 1.0 eV, the second resonant peak is also seen at 1.32 
and 1.35 eV, respectively. The second resonant energy is also 
mostly independent of the height of the first barrier. 

Fig. 4. The dependence of the height of the additional (the 
first) barrier on the transmission coefficient T. The height was 
taken to be 0.1 eV (a), 0.3 eV (b), 0.6 eV (c) and 1.0 eV (d) 
where the width was fixed to 10 Å. The width and the height 
of the main (the second) barrier were fixed to 50 Å and 0.5 
eV respectively. 

As the first barrier becomes high, the resonant peak grows 
distinct accompanied by the reduction of the valley 
transmission coefficient. The valley energy is not affected so 
much by the height of the first barrier when the height is 
between 0.6 and 1.0 eV. 

 

 

From the facts described above, the resonant energy is 
mainly determined by the width and the potential height of 
the main barrier. The height of the additional barrier 
contributes to the transmission coefficient at the valley and to 
how distinct the resonance is. The same tendency is obtained 
in the case when the height of the main barrier is 0.3 eV, as is 
shown in Fig. 5. 

In a conventional double barrier structure, the resonant 
energy is determined mainly by the well width.5) The barrier 
height slightly affects the resonant energy.6) The sharpness of 
the resonance can be controlled by the barrier width. The 
structure has been well studied because the physical meaning 
of the parameters is definite. 

As for the step-like single barrier structures, the principal 
parameters of the resonant energy and the sharpness of the 
resonance (the peak-valley ratio in other words) are possibly 
controlled separately as we have shown. The disadvantage of 
the step-like single barrier structure is the less peak-valley 
ratio that directly influences the performance of the resonant 
tunneling devices. 

Fig. 5. The dependence of the height of the additional barrier 
on the transmission coefficient T. The conditions are the same 
as those in Fig. 4 except for the width of the main barrier; 30 
Å. 
 
Further investigation is expected to confirm the effect of the 
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width of the additional barrier and the quantitative 
relationship between the resonant energy and the two 
parameters of the main barrier. The width of the additional 
barrier may make less contribution to the resonant energy 
because the width is small. If the I-V characteristic is 
investigated, the potential barrier should include the effect of 
the externally applied voltage. Since the applied voltage 
breaks the invariance in inversion of the input and output, the 
effect is of interest. The step-like single barrier structure can 
be more attractive than a double barrier structure if the 
inherent properties are unveiled. 
 

４．Conclusion 
 We studied a step-like single barrier structure without 
externally applied voltages in the view of the dependence of 
parameters on resonant characteristics. The transmission 
coefficient spectra as a function of incident electron energy 
were calculated by means of a transfer matrix method based 
on a one-dimension time-independent Schrödinger equation. 
It was found that the width and the potential height of the 
main (thicker) barrier determine the resonant energy. The 
additional (thinner) barrier is insensitive to the resonant 
energy but the height affects the peak valley ratio. The 
step-like single barrier structure has the advantage to include 
fewer heterointerfaces than the conventional double barrier 
structure and expected to be studied more closely in the 
future. 
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